Associations between Depressive Symptomatology, Diet, and Body Mass Index among Participants in the Supplemental Nutrition Assistance Program

Karen R. Flórez, DrPH; Tamara Dubowitz, ScD; Madhumita (Bonnie) Ghosh-Dastidar, PhD; Robin Beckman, MPH; Rebecca L. Collins, PhD

ABSTRACT

Background Participation in the Supplemental Nutrition Assistance Program (SNAP) has been shown to increase food security, or access to adequate food; however, SNAP participation has also been associated with obesity among certain demographic groups (e.g., women, but not men and children), possibly due to poorer dietary quality. Depressive symptomatology is an understudied factor, which is associated with obesity across the lifespan.

Objective This study examined the relationship between depressive symptomatology, dietary quality, and body weight among a sample of SNAP participants (n=639).

Design The analysis was cross-sectional; survey data were collected in May to December 2011 by trained data collectors.

Participants/setting Adults who self-identified as the primary food shopper of the household in two predominantly low-income African-American neighborhoods characterized as "food deserts" in Pittsburgh, PA, were recruited to participate in this study.

Measures Dietary quality was calculated using the US Department of Agriculture’s Healthy Eating Index-2005. Body mass index (BMI; calculated as kg/m²) was based on objective measurements taken by the interviewer. Current depressive symptomatology was assessed by a trained interviewer using the Patient Health Questionnaire-2.

Statistical analyses performed Descriptive statistics (means and percentages); two multivariate ordinary least-square regression analyses predicting BMI and dietary quality from depressive symptomatology while controlling for sociodemographic factors and food insecurity were performed.

Results Depression was a strong and statistically significant predictor of both dietary quality and BMI; higher score in depressive symptomatology was associated with lower scores in dietary quality (β=-1.26; P<0.0001). A higher score in depressive symptomatology was associated with higher BMI (β=.63; P=0.0031).

Conclusions These findings show that depressive symptomatology is significantly associated with weight-related outcomes and suggests that understanding the risk of depression among SNAP participants could be important to understanding the relationships among SNAP participation, diet, and weight. The association between depressive symptomology, elevated BMI, and lower dietary quality among low-income, primarily African-American residents living in a food desert suggests the potential for mental health interventions to have broader benefits in this population. However, the directionality of this association is unclear and improving diet and reducing weight might also improve mental health symptoms. Additional longitudinal studies should assess these possibilities.

J Acad Nutr Diet. 2015; -:-

Although more than one-third (34.9%) of US adults are obese, disparities exist in the prevalence of obesity across socioeconomic status (SES). For example, 42% of women living in low-income households (i.e., <130% of the poverty line) are obese compared to 29% of women living in households well above the poverty line, and the rate of weight gain among those who are already overweight is fastest among those with the lowest income. Other SES-related indicators, including low wages and economic hardship (e.g., having less than enough money for one’s needs), are also associated with body mass index (BMI; calculated as kg/m²) and higher risk for obesity.

Interestingly, participation in the Supplemental Nutrition Assistance Program (SNAP), formerly known as the Food
Stamp Program, has been associated with obesity among women. SNAP participation is an indicator of SES because it is based on gross and net income (for families with at least one elderly or disabled member it is based just on net income). Participation in SNAP has been shown to increase food security (ie, access to enough food for all members at all times of the year). Yet, in a recent literature review, DeBoo and colleagues suggest that there is growing evidence for a positive association between SNAP participation and obesity in women, especially those who are long-time program participants, although the data fall short of what is needed for causal inference. Data across a number of studies suggest that SNAP participants consume more sugar-sweetened beverages, less fruit, more total fat and added sugars, and more excess calories than non-participants.

An intriguing but understudied factor may be the role of depression as a possible contributing factor to obesity among SNAP participants, given research documenting a link between low SES and depression during the life course. For example, in a meta-regression analysis that looked across SES groups, low-SES individuals had almost twice the odds of being depressed compared to their high-SES counterparts (odds ratio=1.81; 95% CI 1.57 to 2.10; P<0.001). This study also showed that depression increased the odds for developing obesity by almost 60% (odds ratio=1.58; 95% CI 1.33 to 1.87; P<0.001). There is also robust evidence that individuals experiencing food insecurity have higher rates of depression compared to their food-secure counterparts. Although a number of studies of SNAP participants have posited stress and depression as important to diet and weight, no study, to our knowledge, has tested the associations between depression and weight outcomes while controlling for food insecurity among SNAP participants. Almost all the studies to date that have looked at associations between depression and diet have examined whether consumption of specific nutrients predicts risk of depression (eg, n-3 fatty acids are associated with lower risk of depression among adults). Only one study among a low-income cohort suggested that higher dietary quality was associated with reduced symptoms of depression. Others have tested the relationship between dietary patterns and obesity and shown that certain dietary patterns (eg, high intakes of fruit, vegetables, fish, and whole grains) are associated with a reduced depression risk. However, a plethora of laboratory studies also suggest that depression is associated with increased consumption of palatable food rich in fat and sugar, given that these foods have an anxiolytic effect.

This study builds on prior work by testing the hypothesis that depressive symptomatology will be associated with two weight-related outcomes among SNAP participants. Specifically, it examines dietary quality as measured by the Healthy Eating Index-2005 (HEI-2005) (ie, an indicator that assesses conformance to the 2005 Dietary Guidelines for Americans) and measured BMI. To our knowledge, this is the first study to examine these relationships among SNAP participants; therefore, we begin to address a key gap in the literature by examining weight-related outcomes in low-income populations. Because SNAP participants are a group that can be identified and accessed, these analyses might shed light on potential avenues for intervention.

METHODS
Study Design and Sample
The Pittsburgh Hill/Homewood Research on Eating, Shopping and Health (PHRESH) study is a 5-year study of a cohort of 1,372 residents living in “food deserts.” These food deserts are approximately 4 miles from one another in the City of Pittsburgh and have poor access to healthy food options. Both neighborhoods consist of populations that are predominantly low-income and African-American. Baseline data were collected in May through December 2011 from households that were randomly selected from a complete list of addresses obtained from the Pittsburgh Neighborhood and Community Information System, which houses neighborhood-level data for the City of Pittsburgh. Parcel data were merged with Allegheny County Office of Property Investment data to identify residential addresses, which were then cross-referenced with postal service data to remove vacant properties. A random selection of 2,900 households was chosen from these data.

Eighteen trained data collectors who themselves were neighborhood residents went door-to-door to enroll households after local publicity in church bulletins, community-based organizations and groups, posters in businesses, and postcards that were mailed to each of the randomly selected addresses. Data collectors were able to speak with an adult and identify the address as a residence for 1,956 households (67% of all selected addresses). Of those households, 1,649 were eligible to participate (ie, the primary food shopper was 18 years or older and available) and 1,434 (87%) agreed to participate in the study. Of those households who participated, surveys with large amounts of missing data (>20%) were considered unusable (4%).

Data collectors interviewed the main food shopper of the household, who was 18 years or older, using a computer-assisted personal interviewing method. For sensitive questions, including annual household income and participation in federal assistance programs, participants were given the option of using self-administered interviewing methods instead. Specifically, interviewers provided two example questions as a means of “training” the respondent and then turned the screen toward the respondent. When the questions were complete, the respondent turned the computer back to the interviewer. Interviewers also measured height and weight of the main food shopper at the conclusion of the interview and administered a 24-hour dietary recall. Approximately 1 week later, data collectors administered a dietary recall a second time via telephone. The original study protocol specified that dietary data would be collected during 1 weekend day and 1 weekday. However, scheduling proved to be too difficult and only 32% of the sample completed the dietary recall according to this schedule. Most of the sample completed both recalls during weekdays (60%), and 8% during weekends. All study protocols were approved by the RAND Human Subjects Protection Committee. In addition, all study participants were adults (ie, 18 years and older) and provided oral informed consent before the interview.

Measures
SNAP Participation. Participation was measured with a single question (Did any member of your household receive
Corrections—such as SNAP, Access card, or Electronic Benefit Transfer—in any of the last 12 months).

Current Depressive Symptomatology. Depressed mood and anhedonia was captured with the Patient Health Questionnaire-2, which has performed well in various large clinic samples and in an ethnically diverse population sample that included African-American adults. Respondents were asked to estimate how often they have encountered the following problems during the last 2 weeks: “little interest or pleasure in doing things” and “feeling down, depressed, or hopeless.” Raw scores were summed and ranged from 0 to 6, with higher scores indicating greater current depressive symptomatology. The question about depressed mood has a sensitivity of 85% to 90% when compared to longer tools designed to measure major depression, and adding the anhedonia item increases the sensitivity to 95%. In our sample, the scale exhibited acceptable reliability for a two-item scale (Cronbach’s $\alpha=.54$).

Dietary Quality. Data were derived from the mean of two 24-hour recalls administered by data collectors using the online Automated Self-Administered 24-hour recall, which uses a modified version of the US Department of Agriculture’s Automated Multiple-Pass Method. The Automated Self-Administered 24-hour recall was designed to be self-administered, however, there was concern that most respondents would only have Internet access through a mobile device and would not have access to high-speed Internet connections or computers at home. The recall data were then used to derive HEI-2005 scores. The HEI-2005 includes 12 components, five of which represent the major food groups found in the US Department of Agriculture’s MyPyramid (ie, total fruit, total vegetables, total grains, milk, and meat and beans). A maximum score in the HEI is 100; higher scores indicate greater adherence to federal dietary guidelines (ie, 2005 Dietary Guidelines for Americans).

BMI. BMI was based on objective measurements taken by the interviewer and derived from the standard formula of weight (kg) divided by height squared (m²). Interviewers were trained in these specific procedures and measured height using a carpenter’s square (triangle) and an 8-ft folding wooden ruler marked in inches. Height was recorded to the nearest one-eighth of an inch. Interviewers entered adjustments to the height (eg, for shoes or hair ornaments that the respondent chose not to remove). Respondent weight was measured using the SECA Robusta 813 digital scale, which was capable of weighing respondents up to 400 lb. If the respondent weighed >400 lb, self-reported weight was used. Interviewers recorded weight as it appeared on the scale’s liquid-crystal display, to the nearest one-tenth of a pound.

Food Security. The 18-item US Household Food Security Survey Module was used to measure food security (secure, low food security, or very low food security in the last 12 months). This instrument has been used in diverse samples and is the measure used to report national food insecurity prevalence experienced by households since 1995. Low and very low food security levels were combined and food security was used as the reference category.

Sociodemographic Characteristics. Sociodemographic characteristics that were hypothesized to be directly related to diet or BMI were included in the models. These included sex, age (measured as a continuous variable in years), and a count of all children in the household (children defined as aged 18 years or younger). Education was originally assessed with a six-level variable: elementary school, some high school, high school, some college/technical school, college degree, and graduate school, which was then coded as <high school, high school, some college, and college or higher. In addition, for the multivariate models, the first three levels were combined to be the reference category. Employment was coded as employed full or part time, and unemployed as retired, looking for work, disabled, and other. The last four levels were combined to be the reference category because all of those point estimates were of similar magnitude and of the same direction. Income was measured with a single question (“What was your total household income in the past year? Household income means the combined income of everyone who lives in the house and who shares expenses and earnings.”); missing values were imputed with the software IVEWare in SAS macros (version 0.2, 2009, Software Survey Methodology Program at the University of Michigan’s Survey Research Center, Institute for Social Research).

Statistical Analyses

From the initial cohort of 1,372 shoppers, this study focused on SNAP participants only ($n=703$). Women who reported being pregnant or women who reported having a live birth in the 12 months before the day of the household survey ($n=56$) were excluded, given their unique dietary needs and pregnancy-related weight. In addition, participants who refused to answer the SNAP question or did not know whether they received SNAP benefits in the past 12 months ($n=8$) were excluded, for a final sample size of 639 main household food shoppers.

Descriptive statistics (means and percentages) were calculated to examine the distribution of sociodemographic factors, food insecurity, diet-related variables, and depression symptomatology. Two separate multivariate ordinary least-square regressions were modeled for depressive symptomatology for each of the weight-related outcomes, while controlling for sociodemographic factors. The decision to model dietary quality and BMI separately derived from the additional analysis that showed a nonsignificant correlation between HEI-2005 scores and BMI ($P=.44$). Food security was also included in the models to test for associations between depression and weight or dietary quality independent of any role that food security might play. Finally, this study explored the possibility that food security and sex might be acting as possible moderators in the relationship between depressive symptomatology and the two outcomes of interests; however, the interaction terms were nonsignificant for all models in this sample (results not shown).

A series of residual diagnostics were conducted to check for model assumptions (eg, normality, linearity, and homoscedasticity explicitly). The process for choosing covariates included using a conceptual model and previous study results. Statistical significance was set at $P<0.05$, and analyses were conducted using SAS statistical analysis software (version 9.2, 2006, SAS Institute Inc). Results were sufficiently robust to employ cluster-corrected standard errors.
RESULTS

Characteristics of Study Participants

As shown in Table 1, the study sample was composed of older adults, with only one-third (33%) of participants between the ages of 18 and 44 years. Most of the sample was women (76.7%), and nearly half were educated beyond high school (40.8%). Approximately 80% of the sample was not currently employed, and one-third (33%) of participants had at least one child living in the household. Mean annual household income was <$10,000, and only 6% of the study sample reporting an annual household income of ≥$20,000. Despite receiving SNAP benefits, >40% were food insecure (eg, food runs out before there is money to buy more; could not afford to eat balanced meals). Mean score on the HEI was 47.3, which is low (ie, less than half the maximum score).44,45 Mean BMI for the sample was 31.1. A BMI ≥30 is considered obese according to the Centers for Disease Control and Prevention guidelines41; 26.3% of the sample was overweight and 48.6% were obese.

Predictors of Dietary Quality and BMI

Depression was a strong and statistically significant predictor of both dietary quality and BMI (see Tables 2 and 3). Specifically, higher score in depressive symptomatology was associated with lower scores in dietary quality ($\beta=-1.26; P<0.0001$). A higher score in depressive symptomatology was associated with higher BMI scores ($\beta=0.63; P<0.01$), after controlling for other individual factors.

In terms of sociodemographic predictors, only age and college education or higher were significantly associated with dietary quality. Specifically, age ($\beta=0.09; P<0.01$) and college education or higher ($\beta=3.57; P<0.01$) were positively associated with dietary quality after adjusting for other factors.

Table 1. Sociodemographic characteristics of Supplemental Nutrition Assistance Program Participants living in Pittsburgh, PA (n=639)

<table>
<thead>
<tr>
<th>Sociodemographic characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
</tr>
<tr>
<td>18-34</td>
</tr>
<tr>
<td>35-44</td>
</tr>
<tr>
<td>45-54</td>
</tr>
<tr>
<td>55-64</td>
</tr>
<tr>
<td>65+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Race</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
</tr>
<tr>
<td>Mixed black</td>
</tr>
<tr>
<td>Nonblack</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Male</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>High school</td>
</tr>
<tr>
<td>High school</td>
</tr>
<tr>
<td>Some college</td>
</tr>
<tr>
<td>College or higher</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Employment status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time/part-time</td>
</tr>
<tr>
<td>Unemployed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Children in household</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adjusted annual household income</th>
</tr>
</thead>
<tbody>
<tr>
<td><$5,000</td>
</tr>
<tr>
<td>$5,000 to $9,999</td>
</tr>
<tr>
<td>$10,000 to $19,999</td>
</tr>
<tr>
<td>$20,000+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low/very low food security</th>
</tr>
</thead>
<tbody>
<tr>
<td>258 (40.4)</td>
</tr>
</tbody>
</table>

Healthy Eating Index—2005c

<table>
<thead>
<tr>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1±7.9</td>
</tr>
</tbody>
</table>

Depression symptomatologyf

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.38±1.5</td>
</tr>
</tbody>
</table>

DISCUSSION

These findings confirm previous studies that suggest depressive symptomatology is significantly associated with weight-related outcomes, including a study of a low-income cohort.31 Yet these analyses take the findings of previous studies one step further, as this study was able to link depressive symptomatology with both dietary quality and BMI in a low-income cohort. While this study found that depressive symptomatology was negatively associated with dietary quality, it also found that depressive symptomatology was positively associated with BMI. These findings bring to light the potential importance of depressive symptomatology and weight-related outcomes (eg, BMI, dietary quality), particularly among SNAP participants. However, this is a cross-sectional association and a number of studies have investigated the opposite association, given the plausibility that obesity can lead to depression.53-55 Research on dietary intake also suggests high intakes of fruits, vegetables, fish, and whole grains are associated with reduced depression risk among adults.56 Further research is needed to elucidate the direction of this relationship.
intake when families experienced budget shortfalls. Such tradeoffs in the context of poverty have been shown to cause decision fatigue, which refers to the deteriorating quality of decisions made by an individual after a long session of decision making. This situation, in turn, results in a significant depletion of behavioral control (ie, loss of will power or self-control). Suboptimal nutritional choices may be further influenced by depressive mood, given the studies that have found depression influences the severity of cravings, such as snack foods high in carbohydrates (eg, potato chips or pastries). Additional studies focusing on decision fatigue and its relation to health may be particularly promising to better understand the intersection between mental health, diet, and weight among the most vulnerable.

This is a study of a local sample of SNAP participants and may not generalize to the national population of those enrolled in SNAP. This study was also limited to using a two-item measure of depressive symptomatology, given that the primary focus of the PHRESH study is not mental health. Lastly, a model sufficient for estimating the mean effect of depression on the outcomes may be insufficient for unbiased estimation of covariate effects (eg, age, sex) because there may be additional uncontrolled covariates or potential confounders of covariate effects. As such, only the primary effect depressive symptomatology should be considered as a total effect. Despite these limitations, this study focuses on a group that is of particular importance, low-income, primarily African-American residents of urban food deserts. This group is at particularly high risk for obesity and poor nutrition, and the overall sample descriptives bear this out. Thus, the finding that depression is associated with even higher risk within this already high-risk group suggests a potential avenue for intervention is a focus on mental health, especially depressive symptomatology.

CONCLUSIONS

There is still a large gap in our understanding of the role of depression and diet-related outcomes among vulnerable populations. This analysis has shown that addressing this gap may be critical to efforts to address the obesity epidemic in the United States. This issue of bi-directionality reinforces the need for additional research on the relationships between these health outcomes among SNAP recipients, given that this program offers nutrition assistance to millions of low-income individuals and continues to function as the largest hunger safety net in the country. The administration of the program also relies on the infrastructure across state agencies and neighborhood organizations to provide nutritional assistance. Leveraging the program’s capacity and resources may be an effective avenue to address mental health issues among the most vulnerable. Our results suggest that by alleviating depressive symptomatology among SNAP participants, we might help improve dietary quality and, ultimately, health outcomes.

References

AUTHOR INFORMATION
K. R. Flórez is an associate social scientist, R. Beckman is a research programmer, and R. L. Collins is a senior behavioral scientist, RAND Corporation, Santa Monica, CA. T. Dubowitz is a senior policy researcher, RAND Corporation, Pittsburgh, PA. M. Ghosh-Dastidar is a senior statistician, RAND Corporation, Washington, DC.

Address correspondence to: Karen R. Flórez, DrPH, RAND Corporation, 1776 Main St, Santa Monica, CA 90407-2138. E-mail: kflorez@rand.org

STATEMENT OF POTENTIAL CONFLICT OF INTEREST
No potential conflict of interest was reported by the authors.

FUNDING/SUPPORT
This study was supported by grant R01CA149105 from the National Cancer Institute (T. Dubowitz). The National Cancer Institute did not have a role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.